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Hairpin turn dislocations in two-dimensional smectic phases of long semiflexible polymers

Leonardo Golubovic´
Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315
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We elucidate hairpin turn dislocations in two-dimensional smectic phases of long semi-flexible polymers.
We discuss hairpin shapes, sizes, and free energies. We find that hairpin dislocation core may be, under some
circumstances, substantially bigger than the smectic period size. Such hairpin dislocations are accompanied by
large voids that are stable equilibrium structures with sizes determined by a competition of the polymer
bending elasticity and smectic bulk elasticity. The large size of hairpin voids is associated with a low hairpin
energy, much smaller than anticipated before. The actual hairpin shape, size, and energy are all qualitatively
sensitive to the detailed nature of smectics. We document this by considering hairpin dislocations in lyotropic
smectics~systems stabilized by repulsion between polymers, with a positive osmotic pressure! and in thermo-
tropic smectics~systems stable even at zero osmotic pressure, with a preferred distance between semiflexible
molecules!. We discuss in detail hairpin dislocations in lyotropic sterically stabilized Smectics as well as in
DNA-cationic lipid complexes. We elucidate the extinction of hairpin dislocations by annihilations with poly-
mer end points. In lyotropic smectics, rates of these processes are shown to be limited by sluggish reptation of
semiflexible molecules, as well as by substantial energy barriers.

DOI: 10.1103/PhysRevE.64.061901 PACS number~s!: 87.15.2v, 61.30.Jf, 82.70.Kj
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I. INTRODUCTION

Over the past few years, there has been an increased
perimental and theoretical interest in structural properties
two-dimensional~2D! smectic-A phases@1,2#. In part, it has
been stimulated by the recent discovery of such a phas
long DNA molecules intercalated between lipid membran
in DNA-cationic-lipid complexes@3–8#. In these systems
long semiflexible DNA molecules form stacks of on
dimensional smectic layers that are low-dimensional ana
of lamellar fluid membrane phases and other thr
dimensional smectic-A phases,@9–13#. As discussed by
Toner and Nelson@1#, and by this author and Wang@2#, 2D
smectics have only a short-range positional order, in p
because of strong thermal fluctuations of smectic displa
ments ~undulations! that diverge as power laws of the 2
system size. Moreover, in contrast to 3D smectics-A, in 2D
smectics, dislocations are generally free and turn the sme
state into a nematic phase at large length scales@1#. Cross-
over length scalejd between the smectic and nematic regim
is essentially the average distance between the disloca
that form nearly ideal gas at low-temperaturesT. This length
scale,

jd;a exp~ED/2kBT!, ~1.1!

crucially depends on the dislocation free energyED , @1#. In
Eq. ~1.1!, a signifies the smectic phase period.

In 2D smectic phases of semiflexible polymers, the dis
cations are either end points of these long molecules or t
hairpinlike turns, see Fig. 1@6–8#. In this paper, we elucidate
hairpin turn dislocations in 2D smectic phases of long se
flexible polymers, such as DNA molecules adsorbed o
smooth substrate or intercalated between lipid membrane
DNA-cationic-lipid complexes. We discuss hairpin shap
sizes, and their free energiesjd . We find that the hairpin
turns may be, under some circumstances, substantially la
1063-651X/2001/64~6!/061901~18!/$20.00 64 0619
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than the smectic period size. Such hairpin turns are acc
panied by large voids somewhat similar to the Griffith-si
lenticular fractures of smectics discussed by de Gennes,@14#.
In contrast to fractures, hairpin voids are stable equilibriu
structures with sizes determined by a subtle competition
tween the smectic bulk elasticity and bending elasticity
the semiflexible polymer in the core of hairpin dislocation
see Fig. 1. Hairpin dislocations with large voids are sho
here to have relatively low free energies. They are sign
cantly smaller than anticipated in some earlier simple e
mates that equate the vertical size of the hairpinD with the
size of the period of the smectica @see Fig. 1#: With the
assumptionD5a, and, furthermore, by assuming that th
hairpin energyEhp is mostly the bending energy of the high
curved turn that the semiflexible polymer makes in the c
of the dislocation, one easily obtains the estimate,

Ehp5
pk

a
. ~1.2!

Here, k is the semiflexible polymer bending constan
whereas the polymer turn section is assumed to be a s
circle of the diametera. By Eq. ~1.2!,

Ehp

2kBT
5

pjp

4a
, ~1.3!

where jp52k/kBT is the semiflexible polymer persistenc
length. Commonly,jp@a, and thus, the hairpin dislocatio
energy-temperature ratio is large, yielding, by Eq.~1.1!, a
large separation between hairpin dislocations in thermo
namic equilibrium. The problem with the above estimates
in the ad hoc assumption thatD'a. In principle, hairpin
may relax the above large bending energy simply by expa
ing to a sizeD bigger thana. This expansion, however
causes a long-range elastic distortion of the surround
smectic medium, see Fig. 1. Eventually, the hairpin size
©2001 The American Physical Society01-1
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LEONARDO GOLUBOVIĆ PHYSICAL REVIEW E 64 061901
energy will be determined by a competition of the smec
medium energy cost and the polymer bending energy c
We study this competition throughout this paper.

Hairpin shapes, sizes and energies are shown here t
qualitatively sensitive to the detailed nature of smectic m
terials. We document this by considering two major clas
of smectics, thermotropic and lyotropic smectics-A, see Fig.
1. We consider typical thermotropic smectics-A that are
stable even at zero external isotropic pressure, due to ha
intermolecular potentials with a minimum at a preferred d
tance between semiflexible polymers. In these materials
zero pressure, interfaces between hairpin voids and the s
tic medium are nearly straight lines, as depicted in Fig. 1~a!.
We also consider hairpins in typical lyotropic smectics-A,
stabilized by a repulsion between polymers causing a p
tive osmotic pressure. Here, the interfaces between ha

FIG. 1. Hairpin-turn dislocation in two-dimensional smec
phases of long flexible polymers. White areas~of the lateral size
2L! are two wedge-shaped voids in the dislocation core region.
smectic medium is the gray area. In the core of the dislocat
between the contact pointsK, there is a highly curved polyme
section of the linear sizeD, the turn. ~a! depicts a hairpin disloca
tion in smectics atzeroexternal pressure that are stabilized by
termolecular potentials assuming minimum at the preferred dista
a, as in typical thermotropic smectics. In this case, interfaces
tween hairpin voids~white! and the smectic elastic medium~gray!
are nearly straight lines making a finite angleu with respect to
smectic layer equilibrium direction.~b! depicts a hairpin dislocation
in a smectic with purely repulsive interactions between semiflex
polymers, as in typical lyotropic smectics. For this case, a fin
smectic perioda is stabilized by apositiveosmotic pressure of the
smectic medium. In its presence, interfaces between voids~white!
and the smectic medium~gray! curve and become nearly circula
sections of the radiusR.
06190
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voids and the smectic medium are nearly circular sections
depicted in Fig. 1~b!. For both the thermotropic and the lyo
tropic 2D smectics, we obtain hairpin dislocation sizes a
energies. These quantities were related to basic mate
properties, such as the smectic penetration lengthl, the size
of the smectic phase perioda, and the semiflexible polyme
persistence lengthjp . Qualitative forms of these relation
are found to be different for lyotropic and thermotrop
smectic materials, as detailed in Secs. II to IV. In Sec. V,
apply our results for lyotropic smectics to entropically sta
lized systems of long semiflexible polymers with pure
hard-core repulsion@15–17#, that are 2D analogs of fluid
membrane lamellar phases stabilized by steric entr
@18,9–11#. We also discuss, in Sec. VI, hairpin-turn disloc
tions in smectics stabilized by electrostatic repulsion of
form appropriate for the quasi-2D smectics experimenta
studied in DNA-cationic lipid complexes,@4,5#. In Sec. VII,
we elucidate the extinction of hairpin dislocations. It goes
by annihilations of hairpin dislocations with polymer en
points. In lyotropic smectics, rates of these processes
shown to be limited by a sluggish reptation of long semifle
ible molecules, as well as by substantial energy barriers.
discuss the siginificance of these processes for understan
nonequilibrium phenomena in 2D smectics.

This paper is organized as follows: In Sec. II, we outli
the physics of smectics and discuss the problem of wed
shaped openings that are important for understanding v
accompanying hairpin dislocations in these materials. In S
III, we discuss the free energy of the turn that semiflexib
polymer makes in the core of hairpin dislocations. In S
IV, we use the results of Secs. II and III to obtain our resu
for hairpin dislocations in both thermotropic and lyotrop
2D smectics. In Sec. V, we apply our results for lyotrop
systems to entropically~sterically! stabilized systems of long
semiflexible polymers. In Sec. VI, we discuss hairpin dis
cations in smectics stabilized by electrostatic repulsion of
form appropriate for the smectics in DNA-cationic lipi
complexes. In Sec. VII, we discuss the extinction of hairp
dislocations by annihilations with polymer end points. W
summarize our results in Sec. VIII. Appendix A contai
details relevant for the discussion in Sec. III. Appendix
discusses annihilation of two hairpins folded on a semifl
ible polymer in a 2D smectic.

II. VOIDS IN 2D SMECTICS AND HAIRPIN TURNS

In this section, we briefly outline the physics of the sme
tic state and begin our discussion of hairpin turns in th
materials. Free energy of a single hairpin dislocation
volves two major distinct contributions

Ehp5Emed1Eturn. ~2.1!

Here, Emed is the free-energy cost coming from the lon
range smectic medium distortion being induced by the h
pin turn ~see Fig. 1!. Its presence introduces a void com
posed of two wedgelike openings in the smectic material
depicted in Fig. 1. We discuss their energy in this secti
The second term,Eturn in Eq. ~2.1! is the energy localized in
the turn that the semiflexible polymer makes at the very c
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HAIRPIN TURN DISLOCATIONS IN TWO- . . . PHYSICAL REVIEW E 64 061901
of the dislocation. It is discussed in the following sectio
Finally, in Sec. IV, we combine findings of Secs. II and III
obtain our results for hairpin dislocations in both thermot
pic and lyotropic 2D smectics.

We start by considering a smectic stack ofN long semi-
flexible molecules, each described by its height funct
above thex axis, hn(x), for the nth molecule. The thermo
dynamic potential of the stack at constant isotropic press
P, is of the form

Fsm5PE dx @hN~x!2h1~x!#1Fcom1Fbend. ~2.2!

The first term in Eq.~2.2! is the standard pressure3system
area term, whereas the termFcom is the compressional en
ergy of the stack, of the form

Fcom5 (
n51

N E dx V„hn11~x!2hn~x!…, ~2.3!

with V@hn11(x)2hn(x)# being the interaction potential be
tween the neighboring semiflexible polymers~per their unit
length!. The last term in Eq.~2.2! is the bending energy o
the stack, of the form

Fbend5 (
n51

N E dx
k

2 S ]2hn~x!

]x2 D 2

, ~2.4!

with k is the single polymer bending constant. Here, a
throughout this section, we discuss the smectic med
within the common ‘‘paraxial approximation’’ valid fo
small layer slopes,dhn /dx!1. We comment on this at th
end of this section.

The smectic phase perioda5^hn11(x)2hn(x)& crucially
depends on the competition between the first and the se
term in Eq.~2.2!. More suggestively, these two terms may
combined into one

Fcom8 5 (
n51

N E dx @V„hn11~x!2hn~x!…

1P@hn11~x!2hn~x!##. ~2.5!

Minimizing Eq. ~2.5!, with hn11(x)2hn(x)5a, yields the
smectic equation of state

P52
dV~a!

da
, ~2.6!

for the equilibrium value of the smectic phase perioda. For
potentialsV(a) assuming absolute minimum for a particul
value ofa, Eq. ~2.6! manifestly has a solution fora even for
the zero value of the isotropic pressureP. Furthermore, ap-
plying here a sensible nonzeroP typically produces only a
small change of the smectic perioda. Such a behavior is
typical for thermotropicsmectics. On the other side in typ
cal lyotropic smectics, potentialsV(a) are dominantly repul-
sive, i.e., the right-hand side~RHS! of Eq. ~2.6! is positive.
Thus,P.0. In this case, the phase perioda strongly depends
06190
.

-

n

re

d
m

nd

on the applied value of the osmotic pressureP. Whatever is
the case, by writinghn(x)5na1u(x,z), with z5na, and by
expanding the above smectic free energy around its m
mum, one obtains the usual 2D smectic elastic Hamilton
@1#,

Hel5E E dx dzFBsm

2 S ]u

]zD 2

1
Ksm

2 S ]2u

]x2D 2G , ~2.7!

with

Bsm52a
dP~a!

da
5a

d2V~a!

da2 , ~2.8!

the smectic compressibility modulus, and

Ksm5
k

a
, ~2.9!

the smectic bending modulus.
To discuss voids induced by a hairpin inserted betwe

thenth andn11st smectic layer~as in Fig. 1!, we will need
an effective free energy for these two layers,Feff(hn ,hn11). In
general,Feff is obtained by minimizing the system’s fre
energy at fixedhn(x) andhn11(x). By Eqs.~2.2! to ~2.5!, it
must be of the form

Feff~hn ,hn11!5E dxFV„hn11~x!2hn~x!…

1P@hn11~x!2hn~x!#1
k

2 S ]2hn~x!

]x2 D 2

1
k

2 S ]2hn11~x!

]x2 D 2G1F res~hn ,hn11!.

~2.10!

Here, the terms under the integral are the contributions of
nth andn11st layer to the free-energy Eq.~2.2! @see Eqs.
~2.4! and~2.5!#. The last term in Eq.~2.10!, F res is a residual
contribution coming from minimizing the free-energy Eq
~2.2!–~2.5! over configurations of layers that are either abo
then11st or below thenth layer. Physically,F res arises due
to long-rangedistortion of the smectic medium induced b
the presence of dislocation voids in Fig. 1. FindingF res thus
reduces to a solved problem of finding the free energy
semi-infinite smectics above~or below! boundaries of given
shapes@19#, such ashn(x) andhn11 here. We thus find,

F res~hn ,hn11!5E dx
dg

2 F S ]hn~x!

]x D 2

1S ]hn11~x!

]x D 2G ,
~2.11!

with a ‘‘surface tension’’

dg5Bsml5ABsmKsm. ~2.12!

Here,
1-3
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LEONARDO GOLUBOVIĆ PHYSICAL REVIEW E 64 061901
l5AKsm

Bsm
~2.13!

is the smectic penetration length@19#. The effective free en-
ergy in Eqs.~2.10! and~2.11! may be directly used to discus
shapes of symmetric wedges, such as those induced by
presence of a hairpin dislocation~Fig. 1!. By writing

hn5hav2z~x!, hn115hav1z~x!,

with hav5(n11/2)a, and 2z(x), the wedge opening profile
one finds by Eqs.~2.10! and ~2.11!,

Feff~z!5E dxFV„2z~x!…2V~a!1P@2z~x!2a#1dgS dz

dxD
2

1kS d2z

dx2D 2G . ~2.14!

Here, for future convenience, we subtracted the free ene
of the undistorted smectic configuration corresponding
2z(x)5a, with a determined by the Smectic equation
state ~2.6!. Effective free-energy Eq.~2.14! may be easily
handled for profilesz(x) that vary slowly over the length
scale

Lb5Ak/dg5Aal, ~2.15!

at which the tension and the bending term in Eq.~2.14! bal-
ance. For such profiles, the bending term in Eq.~2.14! may
be ignored. With this simplification~which is self-
consistently justified in the following sections!, the variation
of the free-energy Eq.~2.14! yields the equation

dg
d2z

dx2 5V8~2z!1P, ~2.16!

which is easily integrated once to yield

dgS dz

dxD
2

2V@2z~x!#22z~x!P52V~a!2aP,

~2.17!

that is,

Adg
dz

dx
5AV~2z!2V~a!1P~2z2a!. ~2.18!

The integration constant on the RHS of Eq.~2.17! is chosen
to correspond to a wedge profile with 2z(x)→a as x→
2`. Equation~2.18! is easily combined with Eq.~2.14!, to
arrive at the following useful expression

Fw~D !52E
a/2

D/2

dzAdg@V~2z!2V~a!1P~2z2a!#,

~2.19!

for the free energy of a wedge-shaped opening of the sizD.
The presence of a hairpin dislocations in a smectic p

duces two such wedge-shaped voids, see Fig. 1. One is t
left and its opening size is actuallyD12a, whereas the othe
06190
the
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one is to the right and its opening size is justD. The smectic
medium energy contributionEmed in Eq. ~2.1! can be thus
estimated as,

Emed5Fw~D12a!1Fw~D !. ~2.20!

To proceed, we discuss two typical cases of interest h
The first one are lyotropic materials with purely repulsi
intermolecular potentialsV, i.e., by Eq.~2.6!, with generally
positive osmotic pressure,P.0. For large wedge openings,
D@a, the pressure terms dominates the integral in
~2.19!, yielding

Fw~D !'
2

3
APdgD3/2. ~2.21!

In this limit, in the wedge-opening region,a/2!z(x)!D/2,
Eq. ~2.16! reduces tod2z/dx25P/dg. Thus, the wedge pro
file z(x) is a nearly circular section with the radius

R5
dg

P
, ~2.22!

as depicted in the Fig. 1~b!. Furthermore, byz(x)'x2/2R,
one easily finds that the lateral sizeL of the voids in Fig. 1~b!
is

L'ARD5ADdg

P
, ~2.23!

for D@a. We note that Eq.~2.22! has the form of the stan
dard Laplace lawR5s/Dp, provideddg is identified as the
interfacial tensions, and the pressure differenceDp5P
20, since the osmotic pressure inside a large void is'zero
whereas outside of it isP.

The other case of interest here are thermotropic smec
stabilized by potentialsV with a minimum at a preferred
separation between molecules, with a repulsion at sho
distances and an attraction tail at longer distances. As n
before, such materials may be stable even at zero pressuP.
Let us assume that the attraction has a short range com
rable toa. Then, with P50, for a large wedge-openingD
@a, Eq. ~2.19! yields,

Fw~D !'AdguV~a!uD. ~2.24!

In this limit, in the wedge-opening region,a/2!z(x)!D/2,
Eq. ~2.16! reduces tod2z/dx250. Thus, the wedge profile
z(x) is a nearly straight line as depicted in Fig. 1~a!. Its slope
is, by Eq.~2.17! ~with x→`!,

tan~u!5
dz

dx
'AuV~a!u

dg
, ~2.25!

for smectics with interfacial tensionsdg much larger than the
smectic binding energy per unit length,uV(a)u. By Eq.
~2.25!, the lateral sizeL of the void in Fig. 1~a!, is

L'
D

2 tan~u!
'

D

2
A dg

uV~a!u
. ~2.26!
1-4
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HAIRPIN TURN DISLOCATIONS IN TWO- . . . PHYSICAL REVIEW E 64 061901
Equation ~2.25! may be phenomenologically interprete
in terms of a Young’s law for contact angles, provideddg
1uV(a)u/2 is assumed to be the tension of the interfa
between the smectic medium and the voids in Fig. 1~a!, and
2dg is assumed to be the tension at a more subtle sme
smectic ‘‘interface’’ away from the void region. By makin
such assumptions, de Gennes@14# obtains a contact angl
essentially identical to that in Eq.~2.25! derived above from
more microscopic considerations@20#. It is worthwhile not-
ing that the problem discussed by de Gennes in@14#, is that
of lenticular smectic fractures of the critical size~the so-
called Griffith size, @21,22#!. Lenticular fractures areun-
stable void configurations~‘‘critical nuclei’’ ! that may ap-
pear only in the thermotropic case, corresponding
potentialsV(a) assuming a minimum at some finitea. Such
solutions to our Eq.~2.16! @or Eq. ~2.17!# actually appear
only for negativepressuresP tending toopen the void. On
the other hand, our main focus here is on the situations w
P.0 ~repulsive potentials! or P50. In these cases, there a
no lenticular fractures. Rather, the smectic medium s
rounding the voids in Fig. 1 tends to close them. This t
dency is counteracted by the bending elasticity of the t
that polymer makes in the dislocation core in Fig. 1. W
discuss this highly curved polymer section separately, in
next section.

We conclude this section with a few important comme
on the paraxial approximation employed in discussions
this section. It is exact for small wedge profile slope
dz/dx!1. It means, all of the above results are exact
hairpins with a small aspect ratioD/2L!1 in Fig. 1. As
discussed in the following sections, this is indeed the cas
l@a, with l, the smectic penetration depth, Eq.~2.13!. In
Sec. IV, the same condition,l@a, will be shown to ensure
D@a @so, Eqs.~2.21! to ~2.25! are applicable#, as well as
L@Lb @so bending energy terms in Eq.~2.14! could have
been ignored, as was done above#. Thus, in 2D smectic ma
terials with a relatively largel@a, one has large hairpin
turn dislocations with a large aspect ratio,L@D@a, as de-
tailed in Sec. IV. Moreover, as shown in Sec. V, such la
hairpin turns indeed occur throughout the entire stabi
range of entropically stabilized systems of long semiflexi
polymers with purely hard-core repulsion@15,16#. Such sys-
tems are 2D analogs of fluid membrane phases stabilize
steric entropy@18#. We also discuss, in Sec. VI, hairpin turn
in smectics stabilized by electrostatic repulsion of the fo
appropriate for the 2D smectics in DNA-cationic lipid com
plexes@4#. We find that such a repulsion may considerab
depress the hairpin dislocation size and increase its ene

III. ENERGY AND SHAPE OF POLYMER TURNS

In this section, we continue our discussion of hairpin tu
dislocations by focusing now on the highly curved sect
that the semiflexible polymer makes in the core of the dis
cation. We refer to it as theturn in the following. In Fig. 1,
these turns appear like semicircular polymer sections
tween the contact pointsK. Their actual equilibrium shape i
not a semicircle, as detailed in this section.

The number of monomers pulled out of the smectic m
dium ~gray region in Fig. 1! into the turn section fluctuates i
06190
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time. The polymer turn is thus an open subsystem excha
ing its material with the grand-canonical bath constituted
the remaining polymer material, the smectic medium co
ceptualized as the gray region in Fig. 1. For turns of la
sizesD@a, the interactions between the bath and the tu
are significant only in a relatively small region near the tw
contact pointsK between them. In this case, all effects of t
bath may be absorbed into a single thermodynamic varia
m, representing the chemical potential per unit length of
turn @23,24#. The shape of the turn may be thus obtained
varying grand-canonical free energy of the turn, of the for

Gturn52m l 1E
0

l

ds
k

2
H2. ~3.1!

Here,l 5* ds is the arc length of the turn that can fluctuate
a fixed chemical potentialm, and H5df/ds, the polymer
curvature yielding its bending energy, the second term in
~3.1!; here,f(s) is the local polymer slope angle with re
spect to a given axis@see Fig. 2#. In Eq. ~3.1! and hereafter,
we employ the standard arc-lengths parametrization of the
polymer shape. Grand-canonical free-energy Eq.~3.1! needs
to be varied over all turn shapes and lengthsl for fixed po-
sitions of the contactsK of the turn with the smectic me
dium. This yields equations determining the shape of
turn. We discuss them in Appendix A. These equations m
be written in various interesting forms that are nontrivia
related to each other@see Appendix A#. One of them is the
second-order differential equation for the polymer curvatu

m H1
k

2
H31k

d2H

ds2 50, ~3.2!

which may be integrated once to yield

m

2
H21

k

8
H41

k

2 S dH

ds D 2

5CH , ~3.3!

with CH an integration constant. As discussed in Appen
A, an alternative description of the polymer shape is
means of the sine-Gordon~‘‘mathematical pendulum’’! equa-
tion,

k
d2f

ds2 1L sin@f~s!2f0#50, ~3.4!

whereL andf0 are constants. Equation~3.4! may be inte-
grated once to yield

k

2 S df

dsD 2

2L cos@f~s!2f0#5Cf , ~3.5!

where the ‘‘pendulum energy’’Cf is an integration constant
There is a nontrivial relation between the above two

ternative descriptions of the polymer shape. It is discusse
Appendix A. There we show that the description based
Eqs. ~3.2! and ~3.3! is equivalent to that in Eqs.~3.4! and
~3.5!, provided,

L25m212kCH , Cf52m, ~3.6!
1-5
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Each of the two descriptions has its own merits: The
scription in Eqs.~3.2! and ~3.3! directly emerges from the
original physical problem, i.e., the grand-canonical desc
tion Eq. ~3.1! in which the turn lengthl may fluctuate at a
constant chemical-potentialm. On the other hand, the sine
Gordon description in Eqs.~3.4! and~3.5! will more directly
bring us to the final results for the turn shape and ene
providedwe relate the constants therein by using their re
tions in Eq.~3.6! to the parameters of the original physic
problem~3.1! such asm. It should be stressed that the eme
ing of the sine-Gordon description here is not surprising
appears also in closely related Euler’sElastica problem of

FIG. 2. ~a! The universal polymer turn shape@X(f),Z(f)#.
Here, f is the polymer slope angle with respect to thez axis. At
contact pointsK, with f56p/2 and @XK ,ZK#5@2/C,61#, the
polymer curvature vanishes. Here,XK52/C'1.669 24.~b! One full
period, S-shaped section of theElastica curve, the half period of
which is theC-shaped section in~a!.
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flexible rods bent in a plane under forces acting on their e
points@25#. In theElasticaproblem, the length of the rodl is
held fixed~canonical ensemble-type problem!. However, in
the present problem, instead of having a rod of a fix
length, we have the turn, a polymer section with the lengl
that is not fixed. The number of monomers pulled out fro
the smectic medium into the turn section fluctuates and, th
the arc-lengthl of the turn fluctuates also at a consta
chemical-potentialm. Thus, here we have a grand-canonic
ensemble-type problem.

To proceed, we need to know the appropriate value of
chemical potential per unit polymer lengthm. It may be de-
termined purely from the thermodynamic properties of t
smectic bulk medium that plays here the role of the gra
canonical bath for the turn.m may be related to the smecti
phase perioda by minimizing the grand-canonical free
energy density of the 2D smectic overa, @23,24#. Within a
mean-field approach, grand-canonical smectic free-ene
Gsm is simply obtained by considering a uniform smec
state with equidistant flexible polymers separated bya. One
hasGsm52mL tot1Fcom; here,Fcom is as in Eq.~2.3!, and
L tot is the total length of all semiflexible polymers in th
system. Assuming here equidistant polymers, the densitygsm
of Gsm ~per unit area! is easily shown to be

gsm5
2m1V~a!

a
. ~3.7!

Minimizing gsm over a yields the equation,

m52a
dV~a!

da
1V~a!, ~3.8!

relating m and a. We remark that, by Eqs.~3.7!, ~3.8!, and
~2.6!, gsm5dV/da52P, in accord with the standard rela
tion between grand-canonical free-energy density and p
sure@26#. To proceed, it will be useful to get a sense of t
magnitude ofm in smectics. For lyotropic smectics with re
pulsive interactions$@dV(a)/da#5P.0%, one typically has
V(a);2a@dV(a)/da#5aP(a);a2@d2V(a)/da2#5aBsm,
as illustrated in Secs. V and VI. Thus, by Eq.~3.8!,

m;aBsm, ~3.9!

for typical lyotropic smectics. For them, by Eq.~3.8!, m is
generally positive. On the other side, for thermotropic sm
tics in equilibrium at zero pressure$2@dV(a)/da#5P
50%, by Eq.~3.7!, m5V(a)52uV(a)u,0. Thus,m is gen-
erally negative here, as the binding potential must be ne
tive at its minimumV(a). For usual potentials that depen
on a single length scale5a, one has 2V(a)
;a2@]2V(a)/]a2#5aBsm. Thus,

umu;aBsm, ~3.10!

for thermotropic smectics for zero~or small enough! pres-
sure.

Equations~3.9! and~3.10! may be used to assess the re
tive significance of various terms in Eqs.~3.1!–~3.3! for the
shape of the turn. As the curvatureH;1/turn size51/D, the
1-6



la

de

ze

fo

to

,
n
on
s
nl

o
lt.
er
g
e

1

to

l

ted

ur-

by

es

le

qua-

n

HAIRPIN TURN DISLOCATIONS IN TWO- . . . PHYSICAL REVIEW E 64 061901
ratio between the chemical-potential terms and bending e
ticity terms in Eqs. ~3.1!–~3.3! behaves asm/kH2

;mD2/k, that is, by Eqs.~3.9!, ~3.10!, ~2.9!, and~2.13!, as

m

kH2 ;~D/l!2.

Thus, the chemical-potential terms may be ignored provi
the turn sizeD!l, the smectic penetration depth, Eq.~2.13!.
As detailed in Sec. IV, the conditionD!l turns out to be
satisfied for smectics with, actually,large turn sizesD@a
~e.g., over the entire stability range of the smectics stabili
by steric entropy, see Sec. V!. Namely, in Sec. IV, we will
find that for smectics with large turn size,D@a, the condi-
tion D!l is necessarily satisfied at the same time. Thus,
the materials witha!l, one may setm50 in Eqs.~3.1!–
~3.3!. Thus, by Eq.~3.6!, the turn shape problem reduces
solving Eq.~3.5! with Cf50,

k

2 S df

dsD 2

5L cos@f~s!#. ~3.11!

Here, we also set in Eq.~3.5!, f050, as appropriate in the
coordinate system employed in the following~see Fig. 2!. In
the following, we will focus our attention on large turnsa
!D!l for which Eq. ~3.11! is appropriate. Incidentally
only for such turns, withD@a, the separation of the hairpi
dislocation energy into the medium and the turn contributi
Eq. ~2.1! is exact, and the turn may be simply treated a
subsystem interacting with its grand-canonical bath o
through the chemical-potential term, as assumed in Eq.~3.1!.
Otherwise, for the situations withD'a'l, the interactions
between the turn and its smectic bath need to be treated m
precisely, making the hairpin dislocation problem difficu
We pursue a discussion of such a situation in Sec. VI. H
we proceed with the discussion of turn shapes and ener
as obtained from Eq.~3.11!. We parametrize the points of th
turn as@x(s),z(s)#, with x(s) parallel, andz(s) perpendicu-
lar to the equilibrium direction of smectic layers in Fig.
~see Fig. 2!. Notably, z(s) is in the range2D/2,z,
1D/2. The anglef is convenient to measure with respect
the z axis, f5tan21 (dx/dz), i.e., dz/ds5cos(f) and dx/ds
5sin(f). By Eq. ~3.11!, we easily find the following usefu
relation for the bending energy of the turn,

Eturn5E ds
k

2 S df

dsD 2

5LE dscos@f~s!#

5LE
2D/2

1D/2

dz5L D. ~3.12!

To find the constantL here, we transform the integral,

D5E
2D/2

1D/2

dz,

with dz5dscos(f). Using here, by Eq.~3.11!,
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ds5dfA k

2L cos~f!
, ~3.13!

we find

D5A k

2LE
2p/2

1p/2

dfAcos~f!. ~3.14!

Thus,

L52C2
k

D2 , ~3.15!

whereC is an important numerical constant,

C5 1
2 E

2p/2

1p/2

dfAcos~f!5 1
2 B~ 3

4 , 1
2 !'1.198 14.

~3.16!

This constant plays a significant role in the results presen
here and in the following sections. Equations~3.12! and
~3.15! yield,

Eturn52C2
k

D
'2.871 07

k

D
, ~3.17!

for the bending energy of the polymer turn. By Eqs.~3.17!
and ~3.15!, the contact force exerted by the turn on the s
rounding smectic medium is

2
dEturn

dD
52C2

k

D2 5L. ~3.18!

In equilibrium, this force is balanced by the force exerted
the surrounding smectic medium on the turn,dEmed/dD,
with the medium energyEmed as in Eq.~2.20!. This fact will
be used in the following section to obtain equilibrium siz
and energies of hairpin-turn dislocations.

The form of the turn energy in Eq.~3.17! shows that the
equilibrium shape of the turn is different from a semicirc
that hasEbend5pk/D. This difference is further illustrated
by looking at the actual shape of the turn, see Fig. 2~a!. It is
obtained by integrating the polymer shape equationsdz
5cos(f)ds and dx5sin(f)ds. By Eqs. ~3.13! and ~3.15!,
these shape equations may be easily shown to yield the e
tions,

Z~f!5
1

C E
0

f

df8Acos~f8!, ~3.19a!

X~f!5
1

C E
0

f

df8
sin~f8!

Acos~f8!
5

2~12Acos~f!!

C
,

~3.19b!

for the rescaled turn coordinatesZ5z/(D/2) and X
5x/(D/2). Equations~3.19a! and ~3.19b!, with f in the
range ~2p/2, 1p/2! define an essentially universal tur
shape, shown in Fig. 2~a!. For f'p/2, we have acontact
point K between the turn and the smectic medium~see the
1-7
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following paragraph!. By Eqs. ~3.19a! and ~3.19b! with f
5p/2, the contact point is atXK5xK /(D/2)52/C
'1.669 24, andZK5zK /(D/2)51, as shown in Fig. 2~a!.
We note that Eqs.~3.19a! and ~3.19b! can be used to derive
the following alternative expression:

Z~X!56E
0

X

dX8

S 12
1

2
CX8D 2

A12S 12
1

2
CX8D 4 , 0,X,XK5

2

C
,

~3.20!

for the universal shape of polymer turns depicted in F
2~a!. Mathematically, theC-shaped turn in Fig. 2~a! may be
continued beyond the contact points. The continuation
periodic Elastica curve shown in Fig. 2~b!. Note that the
C-shaped turn in Fig. 2~a! is one half of the full curve period
in Fig. 2~b!. Contact pointsK, with f56p/2, in Fig. 2~a!
actually correspond to the inflection pointsI in Fig. 2~b!.
These inflection points have a special feature: At them,both
the slopedz/dx51/tan(f) and the curvatureH5df/ds van-
ish, in accord with our Eq.~3.11!.

At the contact pointK, the turn slope angle with respect
the x axis, u5p/22f, is assumed above to be small,u
!1. Thus,f'p/2 at the contact point. This assumption
consistent with the use of Eq.~3.11! to obtain the turn shape
and energy: As noted before in this section, this equatio
appropriate for materials witha!l. Furthermore, as dis
cussed at the end of Sec. II and in Sec. IV, in materials w
a!l, profiles of wedge openings in Fig. 1 have small slo
anglesu with respect to thex axis ~‘‘paraxial behavior’’!.
Such wedge profiles touch the turn section at contact po
with f'p/2. Moreover, as noted above, the turn curvatu
H5df/ds vanishes at contact points. This is consistent w
a smooth matching of the polymer turnC-shaped section
with the section of thesamepolymer that is to the right of its
turn section in Fig. 1: The polymer section to the right of t
turn is the interface between the right void and the sme
medium. Both the slope and curvature of this interface
small if a!l, see Secs. II and IV. This interface smooth
matches with the turn profile at the contact point withf
'p/2, at which both the turn slopeu5p/22f and its cur-
vatureH are small.

Overall, for smectic materials witha!l, one may com-
bine the Sec. II paraxial approximation results for wedgel
void shapes and energies@Eqs. ~2.21! and ~2.24!# with the
simple result for the turn energy Eq.~3.17! that corresponds
to the universal turn shape in Fig. 2~a!. This is used in the
following section to obtain total energies of hairpin disloc
tions. These results are essentiallyexactin the limit of large
l@a. In the same limit, the polymer turn section approach
the universal shape depicted in Fig. 2~a!, whereas the
dislocation-induced voids depicted in Fig. 1 become hig
anisotropic, with a!D!L, as detailed in the following
section.
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IV. HAIRPIN DISLOCATION SIZE AND ENERGY

In this section, we discuss hairpin dislocation size a
energy by focusing on large hairpin turns with sizesD much
bigger than the smectic phase perioda. As anticipated in
Secs. II and III, here, we show that such hairpin turns oc
in smectic materials withl@a, with l, the smectic penetra
tion length, Eq.~2.13!. For these materials, by Eqs.~2.1!,
~2.20!, and ~3.17!, hairpin dislocation energy is the sum o
the energy of the two wedge-shaped openings and the
bending energy, of the form,

Ehp52Fw~D !12C2
k

D
, ~4.1!

for D@a. Equilibrium turn size and dislocation energy
simply obtained by minimizing Eq.~4.1! over D. In the fol-
lowing, we use this to discuss hairpin dislocations in typic
lyotropic and thermotropic smectic materials introduced
Sec. II.

We first consider typical lyotropic smectic materials, wi
purely repulsive interactions between semiflexible polym
forming smectic layers. Such materials are in thermo
namic equilibrium only at positive values of the osmo
pressureP, see Sec. II. ForD@a, the energy of wedge-
shaped openings,Fw(D), is here given by Eq.~2.21!. With
this, Eq.~4.1! reduces to

Ehp5
4
3 APdgD3/212C2

k

D
. ~4.2!

Minimizing Eq. ~4.2! over D yields its equilibrium value

Deq5C4/5S k2

Pdg D 1/5

. ~4.3!

By Eqs.~2.23! and~4.3!, the lateral size of the wedge-shape
voids in Fig. 1~b!, is

Leq5C2/5S k~dg!2

P3 D 1/5

. ~4.4!

By Eq. ~4.2!, the equilibrium dislocation energy is

Ehp5
10C2

3

k

Deq
5

10C6/5

3
~k3Pdg!1/5, ~4.5!

with Deq as in Eq.~4.3!. By Eqs. ~4.2! and ~4.5!, the ratio
between the medium contribution toEhp @the first term in Eq.
~4.2!# and the polymer turn contribution@the second term in
Eq. ~4.2!# is 2/3.

The dislocation length scales in Eqs.~4.2! to ~4.4! may be
expressed in terms of basic smectic length scalesa andl. To
see this, we conveniently express the osmotic pressureP as

P5VBsm. ~4.6!

Here, for typical lyotropic systems, the quantityV is typi-
cally a numerical constant of the order one, or, at mos
slowly changing function of the smectic perioda @see the
discussion above Eq.~3.9!, and, also, the examples in Sec
V and VI#. By combining Eqs.~4.3!, ~4.4!, and ~4.6! with
Eqs.~2.9!, ~2.12!, and~2.13!, we find
1-8
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Deq5
C4/5

V1/5a2/5l3/5, ~4.7!

and

Leq5
C2/5

V3/5a1/5l4/5, ~4.8!

whereas the radius of the curvature of void interfaces@see
Fig. 1~b! and Eq.~2.22!# is

R5 1
V l. ~4.9!

Note that, by Eqs.~4.7! to ~4.9!,

Deq/a;~l/a!3/5, Leq/a;~l/a!4/5, R/a;~l/a!1.
~4.10!

Thus, in lyotropic 2D smectic materials withl@a, one has a
hierarchy of length scales related to hairpin-turn dislocatio

a!Deq!Leq!R;l. ~4.11!

Equation ~4.11! self-consistently confirms various assum
tions beyond Eq.~4.2! we did in Secs. II and III, such as bi
turn size Deq@a, small aspect ratioDeq/Leq!1 ~paraxial
approximation of Sec. II!, and small (Deq/l)2 ~needed to
ignore them terms in Sec. III!. All these conditions are sel
consistently satisfied in materials with smalla/l ratios. For
example, by~4.10!, the aspect ratio behaves as,

Deq/Leq;~a/l!1/5. ~4.12!

Also, by Eqs.~2.15! and~4.8!, Lb /Leq;(a/l)3/10!1, so the
bending energy term in Eq.~2.14! could had been ignored a
done in Sec. II. In the following section, we will see that t
condition l@a is satisfied, for example, in lyotropic sme
tics stabilized by steric repulsion, yielding there large po
mer turns withDeq@a over essentially the entire stabilit
range of these phases.

Another quantity of interest is the dislocation energ
temperature ratio, i.e., the quantityEhp/2kBT determining the
average distance between hairpin-turn dislocations in t
modynamic equilibrium, see Eq.~1.1!. By Eq. ~4.5!,

Ehp

2kBT
5

5C2

6

jp

Deq
51.196 28

jp

Deq
. ~4.13!

Here,

jp5
2k

kBT
~4.14a!

is the semiflexible polymer persistence length, typically la
at room temperature. By Eqs.~4.7! and ~4.13!,

Ehp

2kBT
5

5C6/5V1/5

6 S a

l D 3/5jp

a
. ~4.14b!

We stress that energy-temperature ratio in Eq.~4.14b! is, for
a!l, substantially smaller than the simple estima
06190
s,
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Ehp/kBT;jp /a one would obtain by naively assuming th
the turn sizeDeq'a, see Sec. I, Eqs.~1.2!, and~1.3!. In fact,
by Eqs.~4.13! and ~1.3!, we have

~Ehp!naive

Ehp
5

3p

10C2

Deq

a
50.6565

Deq

a
, ~4.14c!

indicating that the naive theory in Eq.~1.2! substantially
overestimates hairpin dislocation energy in the situatio
with Deq@a. In Secs. V and VI, we pursue further discu
sion of dislocation energies and sizes in various realistic l
tropic systems.

We now turn to the other type of smectic materials
interest that are thermotropic smectics stabilized by interm
lecular potentialsV(a) with a minimum at a preferred sepa
ration between semiflexible molecules. As discussed in S
II, these smectics are stable even at zero pressureP. For
these materials atP50, the hairpin dislocation energy is, b
Eqs.~4.1! and ~2.24! given by

Ehp52AdguV~a!uD12C2
k

D
, ~4.15!

for D@a. We recall thatuV(a)u is the binding energy~per
unit length! for a pair of long semiflexible molecules. B
minimizing Eq.~4.15! over a, we find,

Deq5CA k

~dguV~a!u!1/2 ~4.16!

for the turn size. By Eqs.~2.26! and~4.16!, the lateral size of
the wedge-shaped voids in Fig. 1~a!, is,

Leq5
C

2
Ak~dg!1/2

uV~a!u3/2. ~4.17!

By Eqs. ~4.15!, the equilibrium hairpin dislocation energ
here is

Ehp54C2
k

Deq
54CAk~dguV~a!u!1/2, ~4.18!

with Deq as in Eq.~4.16!. By Eqs. ~4.15! and ~4.18!, the
smectic medium contribution toEhp @the first term in Eq.
~4.15!# is here equal to that of the polymer turn@the second
term in Eq.~4.15!#.

As for lyotropics, dislocation sizes for thermotropics, Eq
~4.16! and ~4.17!, may be all expressed in terms of bas
smectic length scalesa andl. However, forms of these de
pendencies are different for lyotropics and thermotropics.
see this, we express the value of the binding energyuV(a)u
per unit length as,

uV~a!u5haBsm. ~4.19!

Here,h5uV(a)u/@a2V9(a)# is just a numerical constant de
pendent on the shape of the potentialV @see the discussion
above Eq.~3.10!#. By Eqs. ~4.16!, ~4.17!, and ~4.19!, com-
bined with Eqs.~2.9!, ~2.12!, and~2.13!, we find
1-9
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Deq5
C

h1/4a1/4l3/4 ~4.20!

and

Leq5
Deq

2u
5

C

2h3/4

l5/4

a1/4 , ~4.21!

whereas the wedge slope angleu @see Fig. 1~a! and Eq.
~2.25!# is,

u5h1/4S a

l D 1/2

. ~4.22!

Note that, by Eqs.~4.20! to ~4.22!,

Deq/a;~l/a!3/4, Leq/a;~l/a!5/4. ~4.23!

Thus, for thermotropic 2D smectics withl@a, one has
small wedge opening anglesu, and a hierarchy of length
scales related to hairpin-turn dislocations,

a!Deq!l!Leq. ~4.24!

Equation~4.24! self consistently confirms various assum
tions beyond Eq.~4.15! we did before in Secs. II and III
such as big turn sizeDeq@a, small aspect ratioDeq/Leq
;u!1, and small (Deq/l)2. All these conditions are sel
consistently satisfied in thermotropic materials with sm
a/l ratios. For example, by Eq.~4.23!, the dislocation aspec
ratio behaves here as,

Deq/Leq;~a/l!1/2. ~4.25!

Also, by Eqs.~2.15! and~4.21!, Lb /Leq;(a/l)3/4!1, so the
bending energy term in Eq.~2.14! could had been ignored a
was done in Sec. II.

Another quantity of interest for thermotropics is the d
location energy-temperature ratio, i.e., the quantityEhp/2kBT
determining the average distance between hairpin-turn d
cations in thermodynamic equilibrium, see Eq.~1.1!. By Eq.
~4.16!,

Ehp

2kBT
5C2

jp

Deq
. ~4.26a!

By Eqs.~4.20! and ~4.26a!,

Ehp

2kBT
5Ch1/4S a

l D 3/4jp

a
, ~4.26b!

We stress that energy-temperature ratio in Eq.~4.26a! is, for
a!l, substantially smaller than the simple estima
Ehp/kBT;jp /a one naively obtains by assuming that t
turn sizeDeq'a, see Sec. I, Equations~1.2! and ~1.3!. In
fact, by Eqs.~4.26a! and ~1.3!, we have

~Ehp!naive

Ehp
5

p

4C2

Deq

a
50.5471

Deq

a
, ~4.26c!
06190
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indicating that the naive theory in Eq.~1.2! substantially
overestimates hairpin dislocation energy in the situatio
with Deq@a.

To summarize this section, for thermotropic and lyotrop
2D smectics, we have derived simple expressions for hai
dislocation sizes and energies. These quantities were re
to basic materials properties, such as the smectic penetra
length l, the size of the smectic phase perioda, and the
semiflexible polymer persistence lengthjp . Qualitative
forms of these relations are found to be different for lyotr
pic and thermotropic smectic materials. Compare, for
ample, Eq.~4.10! with Eq. ~4.23! for the dislocation sizes
Deq andLeq. Also, compare Eq.~4.14b! with Eq. ~4.26b! for
the dislocation energy-temperature ratioED/2kBT. With this
remark, we finish our general discussion of hairpin dislo
tion in various classes of 2D smectic materials. In t
following sections, we apply our results to hairpin di
locations in several interesting examples of lyotropic 2
smectics. We note that the anomalous elasticity effe
present at long length scales in 2D smectics@2#, may be
ignored in the present discussions: The lateral size
hairpinsLeq turns out to be much smaller than the anomalo
Ginzburg length scalejGx58pKsm

3/2/kBTBsm54pjpl/a.
For example, for lyotropics, by Eq.~4.7!, Leq/jGx
5(V3/5/4pC2/5)(a/jp)(a/l)1/5,1 in all of the situations
discussed here and in the following sections. Likewise,
ignored the softening of the polymer bending stiffnessk due
to thermal fluctuations~see, e.g., Ref.@11#!. This effect is
potentially strong along the polymer turn section, which
nearly free. It would reducek by an amount udku
;kBT Deq. However, the relative change of the stiffne
constant,udku/k;Deq/jp is small as, generally,Deq!jp .
An exception is sterically stabilized phases in the vicinity
their transition to isotropic liquid phase, whereD'a'jp ,
see the following section. However, asDeq/jp;(a/jp)3/5

@see Eq.~5.7! below#, the softening ofk is quantitatively
insignificant for the interesting effects in sterically stabiliz
phases discussed in Sec. V. An example is a sharp maxim
of the D/a ratio that we find at ana much smaller thanjp
@see Fig. 3~a!, and Eqs.~5.12! and~5.13! below#. This effect,
rather than the thermal softening of the bending stiffn
constant, produces a significant reduction of the hairpin d
location energy in respect to that obtained from the na
hairpin picture@see Eqs.~1.2!, ~1.3!, and ~4.14c!, and the
discussions in following section#.

V. HAIRPIN DISLOCATIONS IN STERICALLY
STABILIZED 2D SMECTICS

Here, and in the following section, we apply our results
two interesting classes of lyotropic stabilized by repuls
interactions between long semiflexible polymers. In this s
tion, we discuss hairpin-turn dislocations in 2D smect
with purely hard-core repulsion interaction between neig
boring polymers@15,16#. Such phases are 2D analogs of e
tensively studied 3D lamellar phases of membranes repe
each other with a short-range repulsion@18,9–11#. Similar to
the membrane phases, in the absence of long-range re
sion, interactions between long molecules are dominated
1-10
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entropic effects~steric entropy!, @15–17#. They yield an ef-
fective long-range potential of the form

V~a!5A
kBT

~jp/2!1/3~a2amin!
2/3. ~5.1!

Here,amin is the cross-section diameter of molecules rep
senting the smallest possible value of the smectic phase
riod. amin is typically much smaller than the polymer pers
tence lengthjp , Equation ~4.14a!, which also enters Eq
~5.1!. The quantityA in Eq. ~5.1! is a numerical constant. I
may be estimated from a simple polymer-in-a-tube-mod
yielding @17#

A'1.1036. ~5.2!

By Eqs.~5.1!, ~2.6!, and~2.8!, the osmotic pressure and th
smectic compressibility are here given by

P5
2A

3

kBT

~jp/2!1/3~a2amin!
5/3 ~5.3!

FIG. 3. ~a! The ratioDeq/a versusa/amin for sterically stabi-
lized 2D smectic phases of long semiflexible molecules. The rat
plotted for several values of the persistence length-to-diamete
tio, jp /amin525, 50, 100, 200, 400. In all cases,Deq/a reaches its
maximum for a/amin55/2: (Deq/a)max50.4655(jp /amin)

2/5 @see
Eqs. ~5.12! and ~5.13!#. We remark that, likewise toDeq/a, the
ratiosLeq/a andReq/a reach their maximum fora/amin515/8 and
3/2, respectively. By Eqs.~5.8! and ~5.9!, these maximum values
are found to be: (Leq/a)max50.4661 (jp /amin)

8/15 and (Req/a)max

50.5016 (jp /amin)
2/3. ~b! The hairpin dislocation energy-to

temperature ratioEhp/2kBT versus smectic phase perioda, for a
sterically stabilized phase of semiflexible molecules with the p
sistence lengthjp5100 nm and molecular diameteramin52 nm.
Note that the separation between hairpin dislocationsjhp rapidly
decreases with increasinga. Fora→jp , Ehp/2kBT;1, and the hair-
pin separationjhp drops to a value'a'jp . There, the hairpin
ensemble becomes dense, and the 2D smectic~in fact, a nematic!
melts into an isotropic liquid phase.
06190
-
e-

l,

and

Bsm5
10A

9

kBTa

~jp/2!1/3~a2amin!
8/3. ~5.4!

Thus, by Eq.~4.6!,

V5
P

Bsm
5

3

5S 12
amin

a D . ~5.5!

The smectic penetration length Eq.~2.13! is, by Eqs.~5.4!,
~2.9!, and~4.14!,

l5
3

A10A
~jp/2!2/3a1/3S 12

amin

a D 4/3

50.9030~jp/2!2/3a1/3S 12
amin

a D 4/3

. ~5.6!

Equations~5.3!–~5.6! may be combined with Eqs.~4.7!–
~4.9! to find the equilibrium hairpin dislocation sizes i
Fig. 1~b!:

Deq5C4/5S 5

3D 1/5S 3

A10A
D 3/5

~jp/2!2/5~a2amin!
3/5

51.2039~jp/2!2/5~a2amin!
3/5, ~5.7!

Leq5C2/5S 5

3D 3/5S 3

A10A
D 4/5

~jp/2!8/15~a2amin!
7/15

51.3461~jp/2!8/15~a2amin!
7/15, ~5.8!

and

Req5 53
3

A10A
~jp/2!2/3~a2amin!

1/3

51.5050~jp/2!2/3~a2amin!
1/3. ~5.9!

The hairpin dislocation energy-temperature ratio Eq.~4.13!
is here

Ehp

2kBT
5C6/5S 5

3D 4/5SA10A

3 D 3/5S jp/2

a2amin
D 3/5

51.9873S jp/2

a2amin
D 3/5

. ~5.10!

Results in Eqs.~5.7!–~5.10! are applicable in the range o
smectic periodsa for which Eq.~5.7! yieldsDeq.a. By Eq.
~5.7!, we find

Deq

a
5C4/5S 5

3D 1/5S 3

A10A
D 3/5S jp/2

a D 2/5S 12
amin

a D 3/5

51.2039S jp/2

a D 2/5S 12
amin

a D 3/5

, ~5.11!

is
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LEONARDO GOLUBOVIĆ PHYSICAL REVIEW E 64 061901
valid in the range ofa in which Deq/a.1. In Fig. 3~a!, we
plot theDeq/a ratio versusa/amin , for several different val-
ues of the ratiojp /amin . We see that this ratio as a functio
of a has a maximum. By Eq.~5.11!, theDeq/a ratio reaches
its maximum value

S Deq

a D
max

5C4/5S 3

25D
2/5S 3

A10A
D 3/5S jp

amin
D 2/5

50.4655S jp

amin
D 2/5

, ~5.12!

when the smectic perioda reaches the characteristic valuea0
given by

a05 5
2 amin . ~5.13!

By Eq. ~5.12!, the maximum value the ratioDeq/a may at-
tain is limited purely by a finite value of the polymer diam
eter amin . For infinitely thin polymer lines, the quantit
(Deq/a)max would diverge. By Eq.~5.12!, this maximum is
controlled by the ratiojp /amin , which is big for realistic
semiflexible polymers. Thus, by Eqs.~5.11! and ~5.12!, the
equilibrium size of hairpin turnsDeq is a priori much bigger
than the perioda of sterically stabilized phases of long mo
ecules, as documented in Fig. 3~a!. In fact, by Eq.~5.11!,
Deq.a over essentially the entire stability range of the
phases. The ratioDeq/a approaches one in only two chara
teristic limits: One of them corresponds to a highly swoll
phase with the perioda given by

amax5
C2

2 S 5

3D 1/2S 3

A10A
D 3/2

jp50.7952jp . ~5.14!

Such a state, with the perioda comparable to the polyme
persistence lengthjp , is at the border line for the phas
transition to a more disordered, isotropic liquid state of po
mers~much like what happens in 3D fluid membrane phas
@27–29,23,24#!. Note that this is actually the nematic-to
isotropic phase transition~recall that, as noted in Sec. I, dis
locations are free and turn 2D smectics into nematics@1#!.
Close to this transition, by Eq.~5.10! with a'jp , the hairpin
dislocation free-energyEhp'kBT @see Fig. 3~b!#, and thus
the dislocation ensemble becomes dense@see Eq.~1.1!#, sig-
naling an onset of a nearby isotropic phase. In the vicinity
this transition, the turn sizeDeq'a'l'jp . Moving away
from the transition, by decreasing the phase perioda, ini-
tially causes an increase of theDeq/a ratio up to its maxi-
mum value (Deq/a)max;(jp /amin)

2/5@1, Eq. ~5.12!, occur-
ring for a55amin/2 @see Fig. 3~a!#. A further decrease ofa
causes a decrease of theDeq/a ratio until it, once again,
becomes one@see Fig. 3~a!#. By Eq. ~5.11!, this happens a
relatively small periods,a;amin8 , with amin8 given by

amin8 2amin

amin8
5C24/3S 3

5D 1/3A10A

3 S amin

jp/2D
2/3

50.7339S amin

jp/2D
2/3

.

~5.15!
06190
-
s,

f

By Eq. ~5.15!, for realistic semiflexible molecules withjp

@amin , amin8 2amin is only a relatively small fraction of the
molecular diameteramin .

Thus, through essentially the entire range of entropica
stabilized smectic phases of long semiflexible molecu
hairpin dislocations have turn sizesDeq significantly bigger
than the phase perioda. Moreover, interestingly, the ratio
Deq/a reaches its maximum value (Deq/a)max;(jp /amin)

2/5

@1, Eq.~5.12!, for a characteristic value of the phase perio
a055amin/2. Figure 3~a! gives the ratioDeq/a versusa/amin
for several different values ofjp /amin . For a quantitative
illustration, let us consider semiflexible polymers withjp
5100 nm andamin52 nm, with a moderate ratiojp /amin
550. For ensembles of these molecules, with only sh
range repulsion, a sterically stabilized smectic state occ
for intermolecular separationsa in the rangeamin52 nm,a
,amax;jp5100 nm. By Eqs.~5.12! and ~5.15!, the ratio
Deq/a reaches its maximum value (Deq/a)max'2.2, for the
polymer separationa5a055 nm. For this particular separa
tion, the polymer turn sizeDeq'11 nm, whereas the size o
the wedge-shaped voids accompanying the dislocation@see
Fig. 1~b!# is, by Eq. ~5.8!, Leq'18 nm. The radius of the
curvature of wedges@see Fig. 1~b!# is, by Eq. ~5.9!, Req
'30 nm. These numbers illustrate the hierarchy of dislo
tion length scales emphasized before in Eq.~4.11!:

a55 nm,Deq511 nm,Leq518 nm,Req530 nm,
~5.16!

for molecules withjp5100 nm andamin52 nm. Such order-
ing of hairpin dislocation length scales,a,Deq,Leq,Req,
emphasized before in Sec. IV@see Eq. ~4.11!# occurs
throughout the entire stability range of sterically stabiliz
phases. In fact, by Eqs.~5.7!–~5.8!, a'Deq'Leq'Req only
in the limits a→amax;jp anda→amin8 'amin .

The dislocation energy-temperature ratio in Eq.~5.10! is
of the order one only close to the border line with the is
tropic liquid phase ata;jp , see Fig. 3~b!. Moving away
from this border line increases theEhp/2kBT ratio, and, by
Eq. ~1.1!, increases the average separation between ha
dislocationsjhp. Thus, for semiflexible molecules withjp
5100 nm, andamin52 nm, we estimatejhp;300 nm fora
540 nm,jhp;700 nm fora520 nm, whilejhp;200mm for
a55 nm corresponding to the example in Eq.~5.16! for
which Ehp/2kBT510.7 andDeq/a52.2. We note that the na
ive hairpin dislocation theory in Eqs.~1.2! and ~1.3! yields
jhp;3 cm for the last example witha55 nm. This more
than ten times largerjhp is predicted by the simple theor
because it ignores the possibility of hairpin core expans
into the surrounding smectic medium to a sizeDeq bigger
than the phase perioda. Going with this expansion is a con
siderable reduction of the hairpin dislocation energy, see
~4.14c!. Because of the exponential dependence ofjhp on the
hairpin energy, this effect is significant even in the situatio
when a relatively smallDeq/a ratio occurs, as illustrated by
the above example. This core expansion effect is stron
for the phase separationa52.5amin at which theDeq/a ratio
is maximal, see Eqs.~4.14c!, ~5.12!, and ~5.13!: For this
phase period, (Ehp!naive/Ehp;(jp /amin)

2/5, and the naive
1-12
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HAIRPIN TURN DISLOCATIONS IN TWO- . . . PHYSICAL REVIEW E 64 061901
theory substantially overestimates hairpin dislocation en
gies in sterically stabilized 2D smectic phases of very s
polymers.

For small phase periods,a!jp , hairpin dislocations have
substantial energies and must be rare in systems that a
true thermodynamic equilibrium, see Eq.~5.10! and Fig.
3~b!. However, as detailed in Sec. VII, such systems, ch
acterized by a low-equilibrium dislocation concentration, c
incidentally have long-time scales needed to reach the
thermodynamic equilibrium. In Sec. VII, we find that suc
systems may maintain relatively largenonequilibriumdensi-
ties of hairpin dislocations possibly present in the early st
of the smectic phase ordering from a more disordered s
~e.g., isotropic polymer liquid!. Lyotropics with largeEhp
coincidentally exhibit large energy barriers for the proces
of hairpin annihilations with polymer end points that exti
guish these dislocations~see Fig. 4!. Moreover, the dynamics
of this process is mediated by a sluggish reptation of lo
semiflexible molecules, as detailed in Sec. VII. In such m
terials, large initial nonequilibrium hairpin dislocation dens
ties decay slowly and true thermodynamic equilibrium m
be hard to reach on realistic time scales.

FIG. 4. Annihilation of a hairpin turn dislocation by a polyme
end-point dislocation. Result is an end-point dislocation2E in ~d!,
with topological charge opposite to that of the original end-po
dislocation1E in ~a!. An energy barrier needs to be overcome
order for the end point1E to move from a metastable state in~b!
to an unstable transition state in~c! preceding the annihilation mo
ment ~see text!. Subsequently, the polymer end flips and produ
the 2E end-point dislocation, whereas the void formerly occup
by the hairpin closes, as depicted in~d!. Note that the motion of the
polymer end points1E and1E8 is mediated by polymer reptatio
leaving the position of the hairpin intact.
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VI. HAIRPIN DISLOCATIONS IN DNA-CATIONIC LIPID
COMPLEXES

In this section, we discuss hairpin dislocations in co
plexes of long DNA molecules mixed with cationic lipi
molecules. These complexes have been the subject of a n
ber of recent experimental and theoretical studies@3–8#. Un-
der some circumstances, these complexes form a 3D lam
membrane phase with DNA molecules intercalated in gal
ies between lipid membranes@3,4#. Interactions between
DNA molecules in different galleries are experimentally e
denced to be weak. Thus, to a good approximation, we m
consider these so-called sliding phases@6–8# as stacks of
weakly interacting 2D smectics in which DNA molecule
play the role of smectic layers. These phases are stabil
by complex repulsive interactions of electrostatic orig
@3,4#. Their detailed form is not well known. To discuss ha
pin dislocations in these phases, we consider the follow
semiempirical form for the osmotic pressure between DN
molecules:

P~a!5Ce

kBT

l B~a2aes!
, Ce'7.260.6, ~6.1!

suggested by Saldittet al., Ref. @4#. Here,l B is the so-called
Bjerrum length;l B'0.7 nm in water at room temperature.aes
in Eq. ~6.1! is an electrostatic diameter of DNA;aes
'0.4 nm at most, some five times smaller than the ac
diameter of DNA,amin'2 nm. By Eqs.~6.1! and ~2.8!, the
smectic compressibility modulus is given here by

Bsm5Ce

kBTa

l B~a2aes!
2 . ~6.2!

The quantityV in Eq. ~4.6! here assumes the simple form

V5
P

Bsm
512

aes

a
. ~6.3!

As a.amin'5aes, V is approximately one in practical situ
ations. The smectic penetration length Eq.~2.13! is, by Eqs.
~6.2!, ~2.9!, and~4.14!, given here by

l~a!5l0S 12
aes

a D , ~6.4!

with

l05Ajpl B

2Ce
. ~6.5!

As a.amin'5aes, to a good approximationl(a)'l0 and
V'1. Notably,l here does not significantly depend on t
phase perioda, in marked contrast to the penetration depth
entropically stabilized phases@see Eq. ~5.6!#. With l B
50.7 nm, for DNA with typical values ofjp550– 100 nm,
by Eq. ~6.5!, the penetration length is in the rangel
51.5– 2.1 nm. Hairpin dislocation size and energy here m
be now estimated by using the results of Sec. IV. In
experiments@3,4#, the phase perioda is continuously varied

t

s
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LEONARDO GOLUBOVIĆ PHYSICAL REVIEW E 64 061901
in a range above 2.5 nm. In this range, the above estimat
l is comparable toa. Thus, the estimates of Sec. IV may b
used to gain a sound qualitative insight only. For examp
by Eq. ~4.7! with a52.5 nm and withl52.1 nm, one finds
Deq52.6 nm. Thus, in the experimentally achieved situ
tions, the turn sizeDeq is essentially the same as the pha
period. Furthermore, for example, by Eq.~4.13! with Deq
'a52.5 nm and jp550 nm, the dislocation energy
temperature ratioEhp/2kBT'24. Thus, by Eq.~1.1!, the
equilibrium distance between hairpin dislocations is so
exp(Ehp/2kBT);1010 times larger than the phase perioda.
The interlayer couplings ignored here may only increase
distance@6–8#.

These estimates support the conjecture of previous stu
@8#, that hairpin dislocations are rare in these systems in t
modynamic equilibrium. It should be stressed though that
actual experimental DNA-cationic lipid systems may eas
have much largernonequilibrium concentration of defects
such as hairpin dislocations created in the early stage of
phase formation. Such nonequilibrium hairpin dislocati
concentrations may decay very slowly to its equilibriu
value. This decay involves sluggish annihilations of hairp
by semiflexible polymer end points, see Sec. VII. On rea
tic experimental time scales, DNA-cationic lipid complex
may easily exhibit a substantional nonequilibrium concen
tion of hairpin dislocations.

VII. ANNIHILATIONS OF HAIRPIN DISLOCATIONS

A potentially more important type of dislocations
DNA-cationic complexes are polymer end points. They m
be envisioned as wedge-shaped voids in the smectic med
with the vertical size'2a, see Fig. 4. As detailed elsewhe
@30#, the ideas of Sec. II may be used to calculate the e
point dislocation energyEep. It is only few kBT large for
DNA-cationic lipid complexes systems discussed in Sec.
In practice, one deals with systems with a huge lengthl of
semiflexible molecules, such asl-DNA used in these com
plexes, withl 516 000 nm@a;3 nm, @4#. In such systems
the attractions between end-point dislocations with oppo
topological charge are week compared to end-point p
tional entropy effects@30#. There, almost all end points ar
free dislocations and the density of free end-point dislo
tions nep51/la. ~Note that each polymer, occupying are
5 la, contributes two end-point dislocations: the left e
point with the topological chargeT511, and the right end
point with topological chargeT521.! Thus, the smectic co
herence length scale~above which it behaves as a nemat!
may be simply estimated as

jep5
1

Anep

5Ala, ~7.1!

yielding, for example,jep5200 nm for l 516 000 nm anda
52.5 nm. This length scale sets the minimum size of m
odomains needed to clearly see the nematic behavior in
experiments onl-DNA-cationic lipid complexes@31#.

As the equilibrium concentration of hairpins is muc
smaller than that of polymer end points, typical faith of
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hairpin introduced~in a nonequilibriumsituation! is to be
extinct. Away from sample boundaries, the most rapid p
cesses for this extinction are annihilations of hairpins w
end-point dislocations. This is illustrated in Fig. 4, depicti
the process

plus-end-point1 hairpin→ minus-end-point, ~7.2!

which preserves the total topological charge: the end p
1E with T511 approaches the hairpin withT522 @Fig.
4~a!–4~c!#, to annihilate it and produce2E end point with
T521, as depicted in Fig. 4~d!, showing also the relaxation
of the void formerly occupied by the hairpin. The motion
the end points1E and1E8 in Fig. 4 is mediated by repta
tion of the semiflexible polymer along its contour lengt
This diffusive collective motion of the whole polymer leave
the hairpin position in space intact~see Fig. 4!. The polymer
reptation is capable to bring one of the two end points i
the hairpin void region~white areas in Fig. 4!. Thus, say
1E, will eventually enter the void to form a composite wit
the hairpin dislocation, depicted in Fig. 4~b! ~with total to-
pological charge521!. The state in Fig. 4~b! is actually
metastable: moving away from it, either back to the state
Fig. 4~a! or to that in Fig. 4~c! costs energy. Indeed, movin
E to the left, back to the smectic medium, recreates the or
nal end-point dislocation and causes an energy cost'Eep.
On the other hand, movingE in Fig. 4~b! to the right by the
displacement5L, causes an equal in magnitude displac
ment of theother end-pointE8 deeper into the smectic me
dium @see Figs. 4~b! and 4~c!#. This displacement goes o
with an energy cost due to a workWL needed to be done
against the osmotic pressure force5Pa acting on the imbed-
ded end pointE8:

WL5PaL. ~7.3!

By Eq. ~7.3! and our results for hairpins in lyotropics@see
Eqs.~4.3! to ~4.5!#,

WL5
3

10

a

Deq
Ehp, ~7.4!

for lyotropics withDeq@a. Thus,WL is smaller thanEhp by
the factor;a/D. On the other hand,WL is expected to be
bigger than the energy of end-point dislocationsEep in lyo-
tropics: For them we have, by Eq.~2.21!,

Eep;Fw~D52a!;S a

Deq
D 3/2

Ehp. ~7.5!

As Eep,WL , the polymer end-pointE in the metastable stat
in Fig. 4~b!, will more likely return to the medium@the situ-
ation in Fig. 4~a!# than to move to the unstable state in Fi
4~c! that precedes the very annihilation event@Fig. 4~d!#.
Overall, by Eq.~7.4!, the displacement from the metastab
state in Fig. 4~b! to the critical state in Fig. 4~c! is hindered
by potentially large energy barrierWL . In the case of steri-
cally stabilized lyotropics, by Eqs.~7.4!, ~5.7!, and ~5.10!,
we haveWL /kBT;(Ehp/kBT)1/3, signaling substantial en
1-14
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HAIRPIN TURN DISLOCATIONS IN TWO- . . . PHYSICAL REVIEW E 64 061901
ergy barriers in systems with high hairpin energies. For
ample, for the hairpin example discussed in sterically sta
lized phases@see Eq.~5.16!# havingEhp521.4 kBT, by Eq.
~7.4! we obtainWL'3kBT. On the other hand, for the hair
pin examples discussed in DNA-cationic lipid complexes
Sec. VI, Eq.~7.4! predicts a hugeWL /kBT'15. It should be
stressed though that Eq.~7.4! is strictly valid only for large
hairpins withDeq@a, whereas, as discussed in Sec. VI, o
hasDeq'a in these complexes. Nonetheless, it is plausi
that the Arrhenius factorRA5exp(WL /kBT) is big for hair-
pins in these systems.

Potentially large energy barriers are not the only fac
that may contribute to long lifetimes of hairpins in system
such as DNA-cationic lipid complexes. In fact, even witho
any energy barrier, it takes typically a long time for the a
nihilation in Fig. 4 to happen. The motion of polymer en
points is mediated by slow reptational diffusion, and for ty
cally long DNA molecules, it may take a substantial amou
of time for the end-pointE in Fig. 4, to reach close to th
hairpin ~even without trying to climb over any energy ba
rier!. To illustrate this, let us consider a hairpin as in Fig.
folded on al-DNA molecule withl 516 000 nm correspond
ing to N550 000 base pairs~as actually used in the exper
ments,@4#!. For the reptation time needed for the end-poinE
to reach close to the hairpin in Fig. 4~a!, we have

t rep;
l 2

D~N!
, ~7.6!

with D(N), the reptational diffusion constant:D(N)
5D(1)/N. Here, at most,D(1);1029 m2 s21, diffusion
constant magnitude of nanometer size particles in wa
With this, for thel-DNA, we find t rep;104 s. So, it may take
few hours for the end-pointE in Fig. 4~a! just to reach the
hairpin void at the center of al-DNA molecule, before at-
tempting to cross the potential barrier therein. Ast rep;N3,
this reptation time scale is typically large for DNA molecul
with a large number of base pairsN; l . This reptation time
sets the minimum time scale for the life time of hairpins, th
may be estimated as

thp5t repRA , ~7.7!

whereRA5exp(WL /kBT).1 is the afforementioned Arrhen
ius factor associated with the energy barrierWL in hairpin
void area. As discussed above, it is plausible thatRA has a
large value for hairpins in DNA-cationic lipid complexes.
fact, even with an energy barrier significantly smaller th
the one anticipated above (15kBT), such asWL54 kBT, one
obtains by Eq.~7.7! a significant hairpin lifetime scale,thp
;106 s, for the above example ofl2DNA molecules used
in DNA-cationic lipid complexes. Likely, the actual hairpi
lifetime scale in these systems is larger. Whatever is
value, the above simple estimates show that these sys
are capable to maintain substantial nonequilibrium conc
trations of hairpin dislocations over long times.

Finally, we note that there are other potentially interest
modes of hairpin extinction. An example is the annihilati
of hairpin pairs folded on the same semiflexible polym
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~unfolding process!, see Appendix B and Fig. 5. As dis
cussed in Appendix B, this process is typically much slow
than the hairpin annihilations by polymer end-point disloc
tions discussed in this section.

VIII. SUMMARY

In this paper, we have elucidated phenomenology
hairpin-turn dislocations in 2D smectic phases of long se
flexible molecules. We have discussed hairpin dislocati
shapes, sizes, and their free energies. We find that the ha
turns may be, under some circumstances, substantially bi
than the smectic period size. Such hairpin turns are acc
panied by large voids in the smectic medium. Hairpin vo
are stable equilibrium structures with sizes determined b
competition between the polymer bending elasticity a
smectic bulk elasticity. Hairpin dislocations with large void
are shown here to have relatively low free energies, sign
cantly smaller than anticipated in earlier naive estimates

Hairpin shapes, sizes, and energies are shown here t
qualitatively sensitive to the detailed nature of smectic m
terials. We have documented this by considering two ma
classes of smectics, thermotropic and lyotropic and lyotro
2D smectics-A. We have considered typical thermotrop

FIG. 5. Hairpin-hairpin annihilations in lyotropic 2D smectic
~a! Opposite hairpin dislocations folded on the same semiflex
polymer. ~b! Unstable transition state with anS-shaped polymer
section. It is the transition state~saddle point! between the disloca-
tion pair state in~a! and a dislocation free state. Note that in th
mode of annihilation, the hairpins need to perform the displacem
l D through the smectic medium before the nucleation in~b! may be
attempted. This is in marked contrast to annihilations of hairpins
polymer end points, in which hairpins do not move~see Fig. 4!.
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smectics-A that are stable even at zero external isotro
pressure due to having intermolecular potentials with a m
mum at a preferred distance between semiflexible polym
In these materials, at zero pressure, interfaces between
pin voids and the smectic medium are nearly straight lin
We have also considered hairpins in typical lyotrop
smectics-A, stabilized by the repulsion between polyme
causing a positive osmotic pressure. In these materials
interfaces between hairpin voids and the smectic medium
nearly circular sections. For both the thermotropic and
lyotropic 2D smectics, we have obtained hairpin dislocat
sizes and energies. These quantities were related to b
materials properties, such as the smectic penetration le
l, the size of the smectic phase perioda, and the semiflexible
polymer persistence lengthjp . Qualitative forms of these
relations are found to be different for lyotropic and therm
tropic smectic materials.

We have applied our results for lyotropic smectics to e
tropically stabilized systems of long semiflexible polyme
with purely hard-core repulsion that are 2D analogs of fl
membrane phases stabilized by steric entropy,@18,9–11#. In
these systems, we have found that the hairpin disloca
sizeD is substantially bigger than the phase perioda, for a
!jp . This expansion of the hairpin core into the surroun
ing smectic medium is associated with a significant reduc
of hairpin dislocation energy. We have also discussed hai
dislocations in quasi-2D smectics in DNA-cationic lip
complexes@4,5#. For hairpin dislocations in these system
we find thatD'a, whereas the hairpin dislocation energy
significantly bigger thankBT. Under realistic experimenta
conditions, we expect no hairpin dislocations to be obse
able in these systemsif they would be in true thermodynami
equilibrium. Nonetheless, these systems are capable to m
tain, over long time scales, large initial nonequilibrium co
centrations of hairpin dislocations, possibly created in
early stage of the formation of DNA-cationic lipid com
plexes by mixing. In these systems, the extinction of hair
dislocations goes on by their annihilations with polymer e
points. The rate of this process is shown to be hindered
sluggish reptational diffusion of DNA molecules, as well
by substantial energy barriers.
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APPENDIX A

In this appendix, we discuss two different ways to der
equilibrium shapes of semiflexible polymers: the gran
canonical~fixed chemical potential! description in Eqs.~3.2!,
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and ~3.3!, and the canonical~fixed polymer length! descrip-
tion in Eqs.~3.4! and~3.5!. Also, we discuss the equivalenc
conditions for the two descriptions stated in Eq.~3.6!.

We first briefly outline derivations of these two descri
tions. The grand-canonical ensemble description in Eq.~3.2!
may be derived by considering the grand-canonical fr
energy Eq.~3.1! in the so-called Monge parametrization,
which the polymer shape in the~x,z! plane is specified by
giving, e.g.,x as a function ofz, that is,x5 f (z). By noting
thatds5dzA11(d f /dz)2, Eq. ~3.1! becomes, in the Monge
parametrization,

Gturn~ f !5E dzA11S d f

dzD
2F2m1

kH2

2 G , ~A1!

with

H5
d

dzF d f /dz

A11S d f

dzD
2G ,

the polymer curvature. Applying the variational conditio
dGturn/d f (z)50, yields a long and fairly complicated differ
ential equation for f (z). That equation turns out to b
equivalent to our simple equation~3.2!, as may be verified
by expressing Eq.~3.2! in the Monge parametrization, b
expressingd/ds as @11(d f /dz)2#21/2d/dx.

Next, we briefly discuss the canonical ensemble desc
tion in Eq. ~3.4!. This sine-Gordon-type equation appears
theElasticaproblem of a flexible rod bent in the~x, z! plane
under a forceF5(Fx ,Fz)5F@sin(f0),cos(f0)# acting on its
end @25#. The rod’s equilibrium shape may be obtained
varying overf(s) the functional,

Ẽ~f!5Ebend2Fxx~ l !2Fzz~ l !

5E
0

l

dsH k

2 S df

dsD 2

2Fx sin@f~s!#2Fz cos@f~s!#J .

~A2!

This yields an equation identical to Eq.~3.4! with L52F.
Thus, the parameterL of Sec. III is essentially the reactio
force of the rod. Applied to our problem, this means thatL is
the force exerted by the polymer turn in Figs. 1 and 2 o
the surrounding smectic medium. This is exemplified by
equation~3.18! of the Sec. III.

Finally, we proceed to derive Eq.~3.6! relating the grand-
canonical and canonical description. By the canonical
scription Eq.~3.4!, we have

f~s!5f01cos21@Q~s!#, ~A3!

where cos21 signifies the inverse-cosine function, and

Q~s!5

1

2
kH22Cf

L
. ~A4!
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Differentiating Eq.~A3! with respect tos, and squaring the
resulting equation, yields

H25

S dQ

ds D 2

12Q2 . ~A5!

Inserting into Eq.~A5! the quantityQ(s) defined by Eq.
~A4!, yields the equation

2
Cf

2
H21

k

8
H41

k

2 S dH

ds D 2

5
L22Cf

2

2k
. ~A6!

It is easy to see that Eq.~A6! is identical to the grand-
canonical ensemble Equation~3.3!, provided the canonica
parametersL and Cf are related to grand-canonical e
semble parametersm and CH in the way we stated in the
equation Eq.~3.6!. Q.E.D.

It should be noted that the relation in Eq.~3.6! between
the two descriptions is not a simple one. For example, it m
be naive to expect that one may directly relate the ma
parameter of the canonical description, the reaction forceL,
to the major parameter of the grand-canonical descript
the chemical potentialm. However, by Eq.~3.6!, the relation-
ship is not so simple. For example, the value ofL depends
not only onm but also on the value of the integration co
stantCH , which is yet another parameter of polymer sha
solutions obtained by the grand-canonical description.

APPENDIX B

As noted in Sec. VII, a potentially interesting mode
hairpin extinction in 2D smectics is annihilation of hairpin
pairs folded on the same semiflexible polymer~unfolding
process!, see Fig. 5. Consider a pair of opposite hairpin d
locations folded on the same semiflexible polymer depic
in Fig. 5~a!. For them, thermal fluctuations may activate
unstable transition state incorporating anS-shaped polymer
section depicted in Fig. 5~b!. Such a state is the transitio
state~saddle point! between the dislocation pair state in Fi
5~a! and a dislocation free state. The activation energy of
transition state is

EA5E822Ehp. ~B1!

Here,E8 is the free energy of the transition state in Fig. 5~b!,
whereasEhp is single hairpin dislocation free energy.EA in
Eq. ~B1! is thus the energy barrier between the dislocat
pair state@Fig. 5~a!# and a dislocation free state. The activ
tion barrierEA limits the rate of hairpin pairs annihilations

Transition state energyE8 may be calculated along th
lines similar to those we used to findEhp in this paper. A
major difference between the transition state@Fig. 5~b!# and a
single hairpin dislocation state~Fig. 1!, is in the shape of the
polymer section in the center of these deffects. For the
location case, it is aC-shaped section discussed in Sec.
~see Fig. 2 therein!. On the other hand, for the case of th
transition state, we have anS-shaped polymer section, se
Fig. 5~b!. Its shape is determined by the same equation
used in Sec. III to find the shape of theC-shaped polymer
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turn @see Eq.~3.11!#. In fact, as already noted in Sec. III, th
equation yields a periodicElastica curve for the polymer
shape, see Fig. 2~b!. C-shaped polymer turns correspond
one-half of the curve’s period, whereas theS-shaped sections
correspond to one full period of thesamecurve. This full
period fills the smectic medium opening with the vertic
size D8 indicated in Fig. 5~b!. As the S-shaped section is
actually composed oftwo C-shaped sections each havin
vertical sizeD8/2, its energy is, by Eq.~3.17!,

ES~D8!52S 2C2
k

D8/2D52~2C!2
k

D8
. ~B2!

Note that the Equation~B2! for the S-section energy is iso-
morphic to Eq.~3.17! for theC-section energy, provided th
constantC therein is replaced by

C852C. ~B3!

Having theS-section energy in Eq.~B2!, the vertical sizeD8,
and energyE8 of the transition state may be determine
along the same lines we used in Sec. IV to find the sizeD
and energyEhp of hairpin dislocations. Thus, we have

E852Fw~D8!12~C8!2
k

D8
, ~B4!

where the first the term is the smectic medium contribut
to E8. Notably, Eq.~B4! is isomorphic to the Eq.~4.1! for
hairpin dislocation energy, providedEhp, D, andC therein
are replaced byE8, D8, and C852C, respectively. This
isomorphism may be used to findE8 andD8 in a quick way.
These quantities may be obtained simply by replacingEhp,
D, andC in various results of Sec. IV, byE8, D8, andC8
52C, respectively. Thus, by Eqs.~4.3! @or ~4.7!#, ~4.4! @or
~4.8!#, and ~4.9!, with C→C852C, we find, for the transi-
tion state in lyotropic smectics,

D8524/5Deq, L8522/5Leq, R85R. ~B5!

Equation~B5! relates the geometrical sizes of the transiti
state, depicted in Fig. 5~b!, to those of hairpin dislocations in
the same material. Likewise, by Eq.~4.5!, with C→C8
52C,

E8526/5Ehp. ~B6!

Equation~B6! relates energy of the transition state in Fig.
to the equilibrium energy of a single hairpin dislocation
the same lyotropic material. Like to their dislocation cou
terparts of Sec. IV, relations in Eqs.~B5! and~B6! are exact
in the situations withDeq@a and may be used to make soun
estimates even in situations withD;a.

By Eq. ~B6!, the activation energy for annihilations o
hairpin dislocation pairs in lyotropic materials, Eq.~B1!, is

EA5~26/522!Ehp'0.2974 Ehp. ~B7!

Thus, the pair annihilation activation energyEA is simply
proportional to hairpin dislocation energy. By comparing E
1-17
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~B7! with the energy barrier for the hairpin annihilation
with end-point dislocationsWL @see Eq.~7.4!#, we see that

WL'1.0091
a

Deq
EA . ~B8!

Thus, WL,EA , in the situations withDeq.a ~at least!.
Thus, hairpin-hairpin annihilations are hindered by ene
barriers larger than those for hairpin annihilations by po
mer end points. Another factor making hairpin-hairpin an
hilations less significant for extinction of hairpins, are pote
tially long times needed for two hairpins to approach ea
other before attempting to annihilate. Note that in t
hairpin-hairpin mode of annihilation, distant hairpins need
execute the displacementl D through the smectic medium
@see Fig. 5~a!# before the nucleation in Fig. 5~b! may be
attempted. The sole time needed for this displacemen
occur will be thus large in the situations with large sepa
tions between hairpins. This is in marked contrast to ann
nc

ys

e
.

E

ri

N

a
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lations of hairpins by polymer end points, in which hairpi
do not moveat all through the smectic medium, see Se
VII. This process is mediated by polymer reptation, whi
does not displace hairpins, and thus, does not cause sig
cant displacement in the surrounding smectic medium~see
Fig. 4!. On the other hand, motion of large hairpins in Fig.
is a substantially slower process, as it requires large displ
ments of the surrounding smectic medium.

Obviously, hairpin-hairpin annihilations will be signifi
cant in the situations in which there are many hairpins fold
on the same polymer. For the case of hairpins with very la
energies, such a state may be realized only in situations
are very far from equilibrium. For semiflexible polymers of
finite length, a more typical nonequilibrium state is that w
a single hairpin folded on a polymer~as in Fig. 4!. For these
more typical nonequilibrium situations, the only mode
hairpin extinction is by their annihilations with polymer en
points, as described in Sec. VII.
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